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The dynamics of the growth of perturbations downstream in a supersonic jet has not been 
extensively studied even though a cursory acquaintance with the literature shows interesting 
and diverse phenomena which can be explained with the help of the slightly nonlinear theory of 
hydrodynamic stability. 

It is known that in a jet there is a wide spectrum of instabilities which interact 
with one another. For example, two-dimensional spatial instabilities can occur near the 
origin of the jet, where the geometry of the flow is one-dimensional. Perturbations for 
which the existence of a radius of curvature of the flow is essential (cylindrical waves) 
show up in the amplitude-frequency spectrum of fluctuations. Examples are axisy~netric 
(azimuthal number n = 0) and azimuthal waves taking the form of simple (n = • double (n = 
• and higher-order helixes. Normally helixes of the lowest mode occur and in the early 
stages of the evolution the left (n = +i) and right (n = -I) helixes are synchronized in 
amplitude and phase, forming beats. 

The flow in a supersonic jet is suCh that perturbations grow over a background of small- 
scale turbulence and undoubtedly at a certain stage large-scale oscillations may be associated 
with this background. There always exist perturbations with negative group velocity and 
hence they complete a feedback loop, inducing oscillations near the origin of the jet. Recent 
data on longitudinally spiralling flow in the initial regions of jets suggests that the latter 
should be taken as hypothetical triggering objects until proof is obtained that they do not 
participate in the dynamics of travelling waves. 

Jet-column mode oscillations are undoubtedly the most important. They carry energy and 
propagate over large longitudinal distances. Hot-wire anemometer data on the evolution of 
waves are associated with these perturbations. Spectrogram analysis [i] shows that the ampli- 
tude-frequency spectrum of fluctuations in the initial region of the jet shows two peaks with 
frequencies corresponding to a relatively narrow range of Struckel numbers and the ratio of 
the frequencies at these peaks is approximately 1 to 2. Fluctuations at the lower frequency 
dominate near the nozzle, the intensities corresponding to the two peaks become equal at a 
certain distance from the nozzle, and at further distances the higher-frequency oscillations 
begin to dominate. Further downstream strongly nonlinear processes begin and the spectrum 
broadens and the two peaks join. This type of perturbation growth is observed over a wide 
range of Mach numbers (from 1.4 to 3). The nature of the perturbation corresponding to each 
peak remains an open question, as an unambiguous answer to this question has not yet been 
obtained. 

In the present paper we consider the region corresponding to the start of nonlinear ef- 
fects where oscillations in the form of two separate peaks evolve. Among the known mechanisms 
of multiple-frequency wave interactions the simplest is the model of a three-wave resonant 
system interacting nonlinearly to lowest order with respect to the initial linear processes. 
The study of interactions of this type was begun in [2] and has been extended and applied 
successfully to transition stages in subsonic boundary layers [3, 4] and Poiseuille flow [5]. 
Therefore, it is logical to consider the possible conditions under which resonant mechanisms 
can exist in the evolution of wave processes in jets. 

The basic idea of the slightly nonlinear approach in stability problems is the solution 
of simple equations describing the behavior of the wave amplitudes in space and time. Then 
the behavior of quantities undefined in linear problems can be determined qualitatively and 
corrections in the evolution of the perturbations can be calculated. In the case of jet- 
column modes the resonant triplet should consist of an axisymmetric mode (the analog of a 
plane wave or higher harmonics) and a pair of azimuthal oscillations (right and left helixes 
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of the same order in n at a lower frequency). This pair is the analog of skew waves (sub- 
harmonics) in boundary layers. 

We note that the specific feature of free jet flow is the presence of an inflection 
point in the velocity profile. Because many of the relations important in semi-infinite 
viscous flow do not hold (in particular, the relations between the viscous and nonlinear 
terms), many of the restrictions on the maximum amplitudes that can be considered in the 
slightly nonlinear theory are no longer true (in [i] the mass velocity distribution shows 
that the fluctuations accurately obey the linear theory even when their relative amplitude 
exceeds 10%, which is several times larger than the linear limit in free shear flow at sub- 
sonic velocities). Hence the conditions under which nonlinear processes can compete with 
linear processes are not completely known and the problem of perturbations in jets is con- 
venient in studying this question. 

i. Basic Equations. We consider the wave dynamics in a compressible, non-heat-con- 
ducting gas flowing from a circular nozzle of radius r0 with exit velocity W0 (characteristic 
parameters). Neglecting expansion of the jet cross section, the velocity field can be written in 
the form u1=~leu ' , Ev', W + Ew' I (u', v', w are the transverse, azimuthal, and longitudinal com- 
ponents of the fluctuation field in the radial r, azimuthal ~ , and longitudinal z directions, 
and W is the longitudinal component of the average velocity). 

In the initial region of the jet the dimensionless W profile in the mixing layer 6 is 
approximately W(r) = exp(-0.693714~ 2) [D = 2(r - ri)/6 is the self-similar variable trans- 
verse coordinate r with the start of the mixing layer r i = 1 - 6/2)]. The factor z(6) is 
given by the Abramovich formula [6] z = 6/b(M) with b = 0.2281, M = 1.5 (M is the Mach num- 
ber at the nozzle). 

The linearized Enler's equations for the perturbations are 
! ! ! t 

8(Ut + ~Vu; @ Pr/Po) @ 8~dl = O, ~(vt @ W~z  @ p~/por)  + 8~d2 = O, 

+ + w , d  + p;/Po) + = 0, ( 1 . 1 )  
t 2 t ! t s[(p~+Wp~)/ao+Oo(Ur+~/,'+w~+~'/r)]+e2d~ O, 

= 2 = (poMp)-1 p0 [ ( ( •  1] -~ ,  a0 

where  t h e  s e c o n d - o r d e r  t e rms  a r e  
v t t t , t 

dt  u u~ -F u~v /r  + w u ~ - -  v'~/r  ' ' = - -  P~9/90, 
= t v t t t ! ! t 

d~ u vr + v W / r  -F ~o v~ + u' # /r  - -  P~9 /rg~, 
z ! ! z t t t t .  2 

d~ = u w~ -F u'~v /r  + lu u'z - -  P~9 /90, 
v t v t 2 t I t 

The boundary conditions for the perturbations are the conditions that the perturbations must 
be finite in the external region and in the core flow~[7]. 

We consider a resonant system of three waves (an axisymmetric wave and two synchronized 

helical waves): 

3 3 3 

E(u,,v.w,p,')j(t,r,%z,x,~),. , = ~ . ~ B ; ( ~ , ~ ) { u , v , u , , p } i ( r ) e i ~  e . e  + e E  [u,t:,u:.p}. te i~ ( 1 . 2 )  
j=1 j=1 l=t 

Here u, v, w, p are the amplitude functions of the corresponding fluctuation quantities; 
Bj(T, r are the complex wave amplitudes depending on the slow variables ~ = st and ~ = sz, 

and c.c is the complex conjugate. 

The phases of the waves 0j = ~jz + n~ -- ~t in the resonant triad are related by the phase 
synchronism condition 0~ = 02 + 0~, which leads to the conditions 

~ = 2~,~,  u, = 2a~,~, n2 = --n3, nt = O, (1.3) 

~t=0a+0:, ~2=0~--03, ~=0~--0~, 

where a = a r § i~i, a r is the wave number and a i is the damping decrement (a i > O) or growth 

increment (~i < 0) of the perturbation. 

Substituting (1.2) into (i.I) and transforming to a single equation for pj, we obtain 
a recursive system of three equations relating the amplitude functions of the linear problem 
and the amplitudes of the waves: 
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e (pj) + (OL (pj)/Oaj) OBflOz + (OL (pj)/d~j)dBj/Ot] + e L (Pt) e~l @ e ~ D~e ~h = 0. ( 1 . 4 )  
l ~ l  l = 1  ) 

Here  ~ i s  r e l a t e d  t o  j t h r o u g h  ( 1 . 3 ) .  I n  t h e  f i r s t  o r d e r  in  r t h e  s y s t e m  ( 1 . 4 )  d e f i n e s  t h e  
l i n e a r  p r o b l e m  and l e a d s  t o  a m o d i f i e d  B e s s e l ' s  e q u a t i o n  o f  o r d e r  n 

tr t - -  t t 1 2 2 2 2 o 

L (pj) - -  pj + ( t , ,  - Po/Oo 2 Fj /Fj)  ~j = ( 5 / , o  --  ~j --  ,*J , - )  ~ = 0 ( 1 .5  ) 
f 

(Fj  = ajW - ~ j ,  Fj = ~ j W ' ) .  The b o u n d a r y  c o n d i t i o n s  h a v e  been  g i v e n  in  d e t a i l  i n  [ 7 ] ;  a 
p r i m e  d e n o t e s  a d e r i v a t i v e  w i t h  r e s p e c t  t o  r .  The p a r t i a l  d e r i v a t i v e s  8L /Sa ,  3L/Sw n eed ed  
be low can  be c a l c u l a t e d  f rom t h e  a b o v e  fo rm o f  L: 

! / 2 OL (pj)/Oaj = 2 [pjW'~j /Fj  + p~ (FfiV/a~ -- aj)] ,  
! / 2  o OL (pj)/&oj = -- 2 (p ja jW /F~ + p f  Ja;)  

(Ds i s  t h e  n o n l i n e a r  c o u p l i n g  c o e f f i c i e n t  o f  l i n e a r  w a v e s )  

D = (d~ + (1/r --  2F'/F) d~ + in/rd 2 ~ lad 3 -- iF~pod4) 9o). 

I n  t h e  s e c o n d  o r d e r  in  r we o b t a i n  e q u a t i o n s  f o r  t h e  s e c o n d - o r d e r  p e r t u r b a t i o n s  

3 3 3 

X L ( ~ e  '~') = - -  E ~~ OL (pj)/O~j + (OStler) OL (pj)/Oo, j) - -  X ~ D ~ .  
/=I j = i  l = ~  

Solutions for p~ exist when the right-hand sides of these equations are orthogonal to the 
solutions of the corresponding conjugate linear problems: 

(OBjO~) r~(OL (pj)/O~) dr + (OBSO~) p~ (OL (p~)/O~) dr + pffDflr = O, 

where p~ is the solution of the linear problem conjugate to (1.5) 

T h i s  e q u a t i o n  i s  r e l a t e d  t o  B e s s e l ' s  e q u a t i o n  and can  be s o l v e d  w i t h o u t  d i f f i c u l t y .  

The s y s t e m  o f  o r i g i n a l  a m p l i t u d e  e q u a t i o n s  f o r  Aj = BjeYJ t h a s  t h e  fo rm [3J 

dA/d t  = ~As + eOAJO~ ( 1 . 6 )  

(~ j  i s  t h e  l i n e a r  t i m e  c o n s t a n t  o f  t h e  o s c i l l a t i o n ) .  The b a s i c  p r o b l e m  f o r  a j e t  i s  t o  f i n d  
t h e  g rowth  o f  t h e  a m p l i t u d e  in  s p a c e .  One t r a n s f o r m s  f rom g r o w t h  in  t i m e  t o  t r u e  g r o w t h  w i t h  
the help of the group velocity, which can be obtained with sufficient accuracy from the ex- 
pression [4] 

i n  which  t h e  l i m i t s  a r e  t a k e n  u n d e r  t h e  i n t e g r a l  s i g n  and ~ = -V~ i .  The s y s t e m  o f  e q u a t i o n s  
( 1 . 6 )  d e s c r i b i n g  t h e  e v o l u t i o n  o f  t h e  a m p l i t u d e s  o f  t h e  o r i g i n a l  t r i p l e t  in  s p a c e  can  be 
written as 

i -- h ; P~Dfl," pf(OL(pyOai)dr. OAj/Oz : - -  ajA~ ( 1 .7  ) 
0 

Here for convenience in the physical interpretation of the results we introduce the trigono- 
metric form for the complex amplitudes 

A~ = a~e i*~ (a3 = lAst, ~I'~ ~rctg(A}/A~)) 

and we s o l v e  ( 1 . 7 )  f o r  t h e  a b s o l u t e  v a l u e  o f  t h e  a m p l i t u d e  a j  and t h e  t o t a l  p h a s e  r = $~ - 
02 - ~ characterizing the relative orientation of the wave amplitudes. The constant h is 
the resonant coupling coefficient and takes into account the degree of phase mismatch of the 
resonant system. The initial value of aj was determined by the intensity of the interacting 
waves Ij = [(<u'2> + <v'~> + <w'2>)/3] ~/~ ~ BjTj exp(-~jz) (Tj is the maximum mean-square 

fluctuation along the transverse coordinate). The longitudinal dependence of the linear wave 
amplitude is then aj lin(Z) = Bj(z0) exp (-a~z). 

2. Results and Discussion. The calculations discussed below correspond to M = 1.5 and 
the pair of resonance frequencies Sh~ = 0.25 (axisymmetric wave) and Sh~ = 0.125 (helical 
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waves), which correspond to [i], where for M = 1.4 the domain frequency corresponded to 
Sh = 0.2475. Here the acoustic Struckel number (Helmholtz) number is Sh=2n~0/a0 (a0=/(J/M2+ 
(• i)/2iu~/is the .speed of sound outside of the jet]. The results for the wave number 
~r and increment ~i are given in Fig. i. It is evident that linear processes in the re- 
gion are quite significant (large ~i) and the longitudinal variation of the axisymmetric 
wave (curve i) is stronger than that of the helical waves (curve 2). 

The exact conditions for resonance are satisfied in a quite narrow region in space, 
which should be taken into account by a reasonable choice of the resonant coupling coef- 
ficient h. Its optimal form can be obtained from the original equations, but because in 
the present paper we are interested in a qualitative examination of the possibilities of the 
resonant interaction model, we consider simple expressions for h, which are known to widen 
the region of resonant coupling. We consider three forms for h: hl = i-iA~rl; h2 = cos(A~rz) 
(when h 2 < 0 we put h 2 = 0); the third expression, which is obviously closest to optimum, 
specifies the maximum value of A~ r for which nonlinear coupling is possible: 

! w h e n A a r ~ 0 , 2  ~ = COS 0,2/' when A = ~ > 0 , 2 ( 5 > 0 , ( i )  h a = 0. 

Qualitative differences in the form and nature of the interactions were not found. The most 
suitable form is obviously of type h 3 with the limiting value Ae r chosen to correspond to 
the experimental data. 

The longitudinal dependence of the nonlinear coefficient 

= i p+ (0L dr 
o l 0  

i s  shown in  F i g .  2 ( t h e  n o t a t i o n  i s  t h e  same as in  F i g .  1 ) .  Note  t h a t  t h e  r e a l  and i m a g i n a r y  
p a r t s  o f  Kj a r e  q u i t e  c o m p l i c a t e d  f u n c t i o n s  o f  t h e  same o r d e r  and t y p i c a l l y  change  s i g n  
t w i c e  in  t h e  i n t e r v a l  o f  z c o n s i d e r e d  h e r e .  

We consider three typical cases (12 = 13 > 11, 12 = 13 < I z, 13 < 12 < If). 

i. Intensity of the Helical Waves Exceeds the Intensity of the Axisymmetric Wave. 

The competing mechanism in this type of energy transfer (pumping of energy into the double- 
frequency wave) is pair interaction where (in the simplest case) an overtone at frequency 
mz = 2m2 is induced by the self-action of the waves at frequency ~2. The mode of the in- 
duced wave is preserved and the interaction itself is second order in the resonance. Obvi- 
ously the primary problem is to examine this model and to compare its effectiveness with 
the resonant model, which could also help determine the type of oscillations in the peaks. 

An important quantity in this case is the minimum intensity at which the nonlinear 
interaction can be distinguished from the linear. The threshold value is 12 ~ 2%, which 
corresponds to the initial amplitude a 2 ~ i0 -~ 

The magnitude and directivity of the nonlinear wave interaction depends in an essential 
way on the relative orientation of the amplitude wave vectors Aj, which is determined by 
the initial value of the total phase ~0. The transfer from the helical waves to the axi- 
symmetric wave is maximum for ~0 in the third quadrant (220 ~ ~ ~0 ~ 230 ~ for any intensities 
of the interacting oscillations. This is illustrated in Fig. 3. The initial intensity of 
the helical waves was chosen to be large enough (I 2 = 15%) to show clearly all of the fea- 
tures of the process, although similar features are present in lower-intensity oscillations 
exceeding the threshold. The solid curves show the longitudinal variation of the axisymme- 
tric wave amplitude a I for different initial values, where curves 1-7 refer to the intensity 
levels I l = 12/k with k = 200, i00, 50, 20, i0, 5, 2. The dashed curves show the linear 
growth of a I for waves of the indicated intensity level. We see that the effect of the 
nonlinearity increases with increasing difference between the initial intensities of the 
interacting waves. As the two intensities approach one another the contribution of non- 
linearity decreases (compare curves i, 4, and 7 corresponding to 11 = 12/200, 12/20, 12/2), 
i.e., background oscillations can be effectively amplified because of the effect of non- 

linearity. 

Overall the interaction is regular and does not display the catastrophic amplitude growth 
typical of a subsonic boundary layer. It corresponds to a redistribution of energy between 
the resonant oscillations. Figure 4 shows the behavior of the helical wave amplitudes 
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a 2 = a~ corresponding to intensity levels 6 and 7 and the same @0. It is evident that the 
behavior of a 2 changes only slightly from linear. 

The phases of maximum and minimum transfer differ by 180 ~ and the latter is in the 
first quadrant (40 ~ ~ ~0 < 50~ Figure 5 shows a I at @0 = 55~ and the initial I i values of 
Fig. 3. We see that for background (or,sufficiently small) a I (curves 1-3) the amplifica- 
tion of the axisymmetric wave exceeds the linear level, except for a small initial region 
in z. But as the initial values of a 2 and a i approach one another the region of space ex- 
pands where the amplification is below the linear level and when a I ~ 4.10 -3 the directivity 
of the entire process changes. The energy from an axisymmetric wave of lower intensity is 
converted into higher intensity helical waves and their intensities increase and begin to 
exceed the linear values (Fig. 4). 

Values of @0 differing from the minmax phases by 90 ~ (second and fourth quadrants) are 
cutoff phases. Only small background oscillations are amplified and the behavior of a i and 
a 2 is determined mainly by the linear laws of growth. 

Hence, we conclude that if the wave amplitudes differ strongly energy is transferred 
to the higher frequency for arbitrary phase orientation of the amplitude vectors but as the 
intensities approach one another specific "phase rules" determine the directivity of the 
transfer process. 

2. Intensity of the Axisymmetric Wave Exceeds the Intensity of the Helical Waves. This 

mechanism corresponds to the C mechanism of transfer (excitation of subharmonics) in a sub- 
sonic boundary layer. All of the typical features of this type of interaction are illustrated 
in Fig. 6 (I 2 = 1.5% and 7.5% with I l = 15%). Here again the process deviates from linear 
when I i ~ 2%. The process is again regular and depends on the relative phase orientation 
of the amplitude vectors of the waves. The most favorable phase for excitation of helical 
waves is @0 ~ 5~ (curve I) and when @0 ~ 185~ the level a 2 decreases for arbitrary relations 
between the amplitudes (in contrast to the case discussed above) (curve 2). The cutoff 
phases of the nonlinear process (curve 3) are @0 ~ 125~ and 235 ~ . Transfer occurs by para- 
metric amplification and is determined purely by the initial value of I i. For example, when 
I i = 5% the increase or decrease of a 2 (for all 12 between II/200 and Ii/2) is by a factor 
of 1.4; for I l = 10% the factor is 2, for I I = 15% it is 2.8. We note that in general the 
transfer of energy in the direction of the lower frequency is weaker and depends more on the 
linear process. 

3. Intensities of All Waves are Different. This case includes a very large number 
of different combinations. The situation 13 < 12 < I l is the most interesting because in this 
case one can model the appearance of synchronized beating oscillations in the spectrum. This 
case is shown in Fig. 7 for wave intensities in multiples of i0: I i = 15%, 12 = 1.5%, 13 = 
0.15%. We see that none of the restrictions on the phase of the interaction hold, although 
@0 ~ 0 remains the phase of maximum transfer to lower frequencies. Secondly it is evident 
that the "capture" phenomenon, accompanied by a rapid equalization of the amplitudes of the 
helical waves, does not occur. Figure 7 shows that the maximum approach of the amplitudes 
occurs at @0 = 5~ where the difference between them is still large (curve i). At @0 = 185~ 
(for equal a 2 and a 3 this phase gives transfer back to the axisymmetric wave) there is 

231 



o2, ~o =225~ G z 

ld2L___ 
G 7 

0,,4 O,S qa 1,oa 

Fig. 4 

~ -  7 

2 - ~ - ~  "~ .~.~ 

4 ~ ]  ~7 "%~ "~ .~ ~ " ~  

' a y  ' 'o18 . . . .  e' 
Fig. 5 

% 

8 
4: 

2- 

2 

/ I  I I 1 I I I i I I 1 I 

0,4 qe  o,a O" 

Fig. 6 

% ] f 2 

g ' 'o,'r ' T  

Fig. 7 

also an increase in a~ curve 2) accompanied by a decrease in a~. The calculations show 
that approach of a 2 and a 3 is more probable if their initial values are not too different, 
but complete equalization of a 2 and a a is not observed. Figure 7 also shows a a at the cut- 
off phases @0 = 125~ and 255 ~ (curves 3 and 4). Here a 2 is close to the level correspond- 
ing to @0 = 185~ In all of these cases the amplitude a I is close to the linear value. 

Obviously the significant decrease in the level of excitation of a 2 in comparison with 
case 2 is due to the fact that nonlinear coupling causes some of the energy to go into 
amplifying the less intense wave a 3 . The absence of the "capture" phenomenon serves as 
indirect support that the interaction process is indeed slightly nonlinear. 
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